The Importance of Network Position in the Diffusion of Agricultural Innovations in Smallholders of Dual-Purpose Cattle in Mexico
Abstract
:1. Introduction
Theoretical Background of Social Network Analysis (SNA)
- -
- Decentralized approach (peer-to-peer and bottom-up diffusion): A farmer who acts as a broker between two or more closely connected groups of farmers could gain important comparative advantages, performing better than other farmers do. Brokering position allows obtaining new information from other groups, becoming an early adopter in the community. This is the behaviour found by Villarroel-Molina et al. [3] and Zaheer et al. [40].
- -
- Centralized approach (top-down diffusion): In the diffusion of a high cost or complex adoption technology, the organizations act as diffusion agents or facilitators, frequently applying them in pilot farms. In this case, the adoption is homogeneous, and the network structure will be different from the previous one. This is the traditional diffusion approach described in dual-purpose by Espejel-García et al. [41], Espinosa-García et al. [42], and Zarazúa et al. [43].
2. Materials and Methods
2.1. Data Collection
2.2. Livestock Innovation Level
2.3. Social Network Analysis Measures
3. Results
3.1. Social Network Analysis Results
3.2. Benchmarking Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barg, U. Aquaculture, the 2030 Agenda for Sustainable Development and FAO’s Common Vision for Sustainable Food and Agriculture; FAO Aquaculture Newsletter: Rome, Italy, 2018; pp. 47–48. [Google Scholar]
- Rangel, J.; Espinosa, J.A.; de Pablos-Heredero, C.; Rivas, J.; Perea, J.; Angon, E.; Garcia-Martinez, A. Is the increase of scale in the tropics a pathway to smallholders? Dimension and ecological zone effect on the mixed crop-livestock farms. Span J. Agric. Res. 2017, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Villarroel-Molina, O.; De-Pablos-Heredero, C.; Rangel, J.; Vitale, M.P.; García, A. Usefulness of Network Analysis to Characterize Technology Leaders in Small Dual-Purpose Cattle Farms in Mexico. Sustainability 2021, 13, 2291. [Google Scholar] [CrossRef]
- Mikecz, O.; Vos, R. Can Smallholders Double Their Productivity and Incomes by 2030? ESA Working Paper No. 16-04; FAO: Rome, Italy, 2016. [Google Scholar]
- Biermann, F.; Kanie, N.; Kim, R.E. Global governance by goal-setting: The novel approach of the UN Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2017, 26, 26–31. [Google Scholar] [CrossRef]
- García-Martínez, A.; Rivas-Rangel, J.; Rangel-Quintos, J.; Espinosa, J.A.; Barba, C.; De-Pablos-Heredero, C. A Methodological Approach to Evaluate Livestock Innovations on Small-Scale Farms in Developing Countries. Future Internet 2016, 8, 25. [Google Scholar] [CrossRef]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; Garcia-Martinez, A. Sustainability in Smart Farms: Its Impact on Performance. Sustainability 2018, 10, 1713. [Google Scholar] [CrossRef] [Green Version]
- Hooft, V.T.; Wollen, T.S.; Bhandari, D.P. Sustainable Livestock Management for Poverty Alleviation and Food Security; Cabi: Oxfordshire, UK, 2012. [Google Scholar]
- O’Brien, T.; Creţan, R. The role of identity in the 2015 Romanian shepherd protests. Identities 2019, 26, 470–488. [Google Scholar] [CrossRef]
- Rivas, J.; Manuel Perea, J.; De-Pablos-Heredero, C.; Morantes, M.; Angon, E.; Barba, C.; García, A. Role of technological innovation in livestock breeding programmes: A case of cereal-sheep system. Ital. J. Anim. Sci. 2019, 18, 1049–1057. [Google Scholar] [CrossRef]
- Valdovinos Terán, M.E.; Espinoza García, J.A.; Velez Izquierdo, A. Innovación y eficiencia de unidades bovinas de doble propósito en Veracruz. Rev. Mex. Agroneg. 2015, 36, 1306–1314. [Google Scholar]
- Villarroel-Molina, O.; Rangel, J.; Barba, C.; García, A. Use of social networks to explore smallholder’s adoption of technologies in dual purpose farms. ESIC Market. 2019, 50, 361–385. [Google Scholar]
- Torres, Y.; Garcia, A.; Rivas, J.; Perea, J.; Angón, E.; De-Pablos-Heredero, C. Socioeconomic and productive characterization of dual-purpose farms oriented to milk production in a tropical region of Ecuador. The case of the province of Manabí. Rev. Cient. Fac. Cien. V. 2015, 25, 330–337. [Google Scholar]
- Rangel, J.; Rivas, J.; Torres, Y.; Perea, J.; De-Pablos-Heredero, C.; Barba, C.; García, A. Effect of flock size and ecological area in the technological level of dual-purpose cattle system from Ecuadorian Tropics. Rev. Cient. Fac. Cien. V. 2016, 26, 164–172. [Google Scholar]
- Rangel, J.; Perea, J.; De-Pablos-Heredero, C.; Espinosa-García, J.A.; Mujica, P.T.; Feijoo, M.; Barba, C.; García, A. Structural and technological characterization of tropical smallholder farms of dual-purpose cattle in Mexico. Animals 2020, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, B.; Vasseur, L.; López, R.; Lozano, P.; García, Y.; Arteaga, Y.; Bravo, C.; Barba, C.; García, A. Structure and above ground biomass along an elevation small-scale gradient: Case study in an Evergreen Andean Amazon forest, Ecuador. Agrofor. Syst. 2020, 94, 1235–1245. [Google Scholar] [CrossRef]
- Bastanchury-López, M.T.; De-Pablos-Heredero, C.; Montes-Botella, J.L.; Martín-Romo-Romero, S.; García, A. Impact of Dynamic Capabilities on Performance in Dairy Sheep Farms in Spain. Sustainability 2020, 12, 3368. [Google Scholar] [CrossRef] [Green Version]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; Garcia, A. Impact of Technological Innovation on Performance in Dairy Sheep Farms in Spain. J. Agric. Sci. Technol. 2020, 22, 597–610. [Google Scholar]
- Boval, M.; Angeon, V.; Rudel, T. Tropical grasslands: A pivotal place for a more multi-functional agriculture. Ambio 2017, 46, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatab, A.A.; Cavinato, M.E.R.; Lagerkvist, C.J. Urbanization, livestock systems and food security in developing countries: A systematic review of the literature. Food Secur 2019, 11, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Quintos, J.; De Pablos-Heredero, C.; Vélez, A.; Espinosa, A.; Perea, J.; Angón, E.; García, A. Sustentabilidad social de agroecosistemas bovinos de doble propósito en México. Arch. de Zootec. 2016, 65, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Rangel, J.; Espinosa, J.A.; Pablos-Heredero, C.d.; Barba, C.; Velez, A.; Rivas, J.; Garcia, A. Adoption of innovations and organizational practices in management, animal feeding and reproduction in dual-purpose bovine of small farms in Mexico. Rev. Cient. Fac. Cien. V. 2017, 27, 44–55. [Google Scholar]
- Zarazúa, J.-A.; Almaguer-Vargas, G.; Rendón-Medel, R. Capital social. Caso red de innovación de maíz en Zamora, Michoacán, México. Cuad. Desarro. Rural 2012, 9, 105–124. [Google Scholar]
- Cano-Reyes, O.; Villanueva-Jimenez, J.A.; Reta-Mendiola, J.L.; Huerta-De-la-Pena, A.; Zarazua, J.-A. Participant research and innovation networks in agroecosystems with papaya trees in Cotaxtla, Veracruz, Mexico. Agric. Soc. Y Desarro. 2015, 12, 219–235. [Google Scholar] [CrossRef] [Green Version]
- Borgatti, S.P.; Everett, M.G. Notions of position in social network analysis. Sociol. Methodol. 1992, 22, 1–35. [Google Scholar] [CrossRef]
- Reagans, R.; McEvily, B. Network structure and knowledge transfer: The effects of cohesion and range. Adm. Sci. Q. 2003, 48, 240–267. [Google Scholar] [CrossRef] [Green Version]
- Crandall, D.; Cosley, D.; Huttenlocher, D.; Kleinberg, J.; Suri, S. Feedback effects between similarity and social influence in online communities. In Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 160–168. [Google Scholar]
- Burt, R.S. The network structure of social capital. Res. Organ. Behav. 2000, 22, 345–423. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; HUP: Cambridge, UK, 2009. [Google Scholar]
- Burt, R.S. Reinforced structural holes. Soc. Netw. 2015, 43, 149–161. [Google Scholar] [CrossRef]
- Borgatti, S.P. Centrality and network flow. Soc. Netw. 2005, 27, 55–71. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. Network analysis of 2-mode data. Soc. Netw. 1997, 19, 243–270. [Google Scholar] [CrossRef]
- Bonacich, P.; Lloyd, P. Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 2001, 23, 191–201. [Google Scholar] [CrossRef]
- Bonacich, P. Power and centrality: A family of measures. Am. J. Sociol 1987, 92, 1170–1182. [Google Scholar] [CrossRef]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Sankar, C.P.; Asokan, K.; Kumar, K.S. Exploratory social network analysis of affiliation networks of Indian listed companies. Soc. Netw. 2015, 43, 113–120. [Google Scholar] [CrossRef]
- Bastanchury-López, M.T.; De Pablos Heredero, C.; García-Martínez, R.; Martín-Romo Romero, S. Review of the measurement of dynamic capacities: A proposal of indicators for the sheep industry. Cienc. Tecnol. Agropecu. Mosquera 2019, 20, 1–15. [Google Scholar]
- Zaheer, A.; Bell, G.G. Benefiting from network position: Firm capabilities, structural holes, and performance. Strateg. Manag. 2005, 26, 809–825. [Google Scholar] [CrossRef]
- Espejel-García, A.; Cuevas-Reyes, V.; Muñoz-Rodríguez, M.; Barrera-Rodríguez, A.; Cervantes-Escoto, F.; Sosa-Montes, M. Sistema Regional de Innovación y Desarrollo Rural Territorial; pequeños product ores de leche del valle del Mezquital, Estado de Hidalgo, México. Span. J. Rural Dev 2014, 5, 1–14. [Google Scholar] [CrossRef]
- Espinosa-García, J.A.; Quiroz-Valiente, J.; Moctezuma-Lopez, G.; Oliva-Hernandez, J.; Granados-Zurita, L.; Berumen-Alatorre, A.C. Technological prospection and strategies for innovation in production of sheep in Tabasco, México. Rev. Cient. Fac. Cien. V. 2015, 25, 107–115. [Google Scholar]
- Zarazúa, J.A.; Solleiro, J.L.; Altamirano Cárdenas, R.; Castañón Ibarra, R.; Rendón Medel, R. Esquemas de innovación tecnológica y su transferencia en las agroempresas frutícolas del estado de Michoacán. Estud. Soc. 2009, 17, 37–71. [Google Scholar]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Cardenas-Bejarano, E.; Gallardo-Lopez, F.; Nunez-Espinoza, J.F.; Asiain-Hoyos, A.; Rodriguez-Chessani, M.A.; Velazquez-Beltran, L.G. Innovation networks in livestock production groups for technological validation and transference in Mexico. Agric. Soc. Y Desarro. 2016, 13, 237–255. [Google Scholar]
- Monárrez-Espino, J.; Hoyos, J.R.C. Stability of centrality measures in social network analyses to identify long-lasting leaders from an indigenous boarding school of northern Mexico. Estud. Sobre Cult. Contemp. 2010, 16, 155–171. [Google Scholar]
- Walther, O.J.; Tenikue, M.; Trémolières, M. Economic performance, gender and social networks in West African food systems. World Dev. 2019, 124, 104650. [Google Scholar] [CrossRef]
- Aguilar-Gallegos, N.; Martínez-González, E.G.; Aguilar-Ávila, J.; Santoyo-Cortés, H.; Muñoz-Rodríguez, M.; García-Sánchez, E.I. Análisis de redes sociales para catalizar la innovación agrícola: De los vínculos directos a la integración y radialidad. Estud. Gerenc. 2016, 32, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Rivas, J.; Perea, J.M.; De-Pablos-Heredero, C.; Angon, E.; Barba, C.; García, A. Canonical correlation of technological innovation and performance in sheep’s dairy farms: Selection of a set of indicators. Agric. Syst. 2019, 176, 102665. [Google Scholar] [CrossRef]
- Ponce-Méndez, F.; Álvarez-Bernal, D.; Ceja-Torres, L.F. Model GGAVATT and networks of innovation in the dairy basin in the Cienega of Chapala, Michoacán. Rev. Mex. Cienc. Agric. 2016, 7, 545–558. [Google Scholar]
- Aguirre-López, J.M.; Díaz-José, J.; Chaloupková, P.; Guevara-Hernández, F. Unraveling Innovation Networks in Conservation Agriculture Using Social Network Analysis. In Challenges in Social Network Research; Springer: Salerno, Italy, 2020; pp. 133–148. [Google Scholar]
- Dhehibi, B.; Rudiger, U.; Moyo, H.P.; Dhraief, M.Z. Agricultural Technology Transfer Preferences of Smallholder Farmers in Tunisia’s Arid Regions. Sustainability 2020, 12, 421. [Google Scholar] [CrossRef] [Green Version]
- Akers, R.L.; Jennings, W.G. Social learning theory. Handb. Criminol. Theory 2015, 4, 230–240. [Google Scholar]
Variables | Mean | Median | SD 1 | CV 2 | Min 3 | Max 4 |
---|---|---|---|---|---|---|
Grazing surface, ha | 27.17 | 19 | 38.67 | 142.33% | 3 | 400 |
Total animal unit, AU | 19.25 | 19.2 | 3.96 | 20.57% | 10 | 47 |
Herd size, n° cattle | 25.54 | 25 | 6.32 | 24.76% | 10 | 65 |
Stocking rate, UA/ha | 1.09 | 1 | 0.636 | 58.32% | 0.05 | 3.82 |
Milk production, L/year | 11,229 | 10,000 | 6825 | 60.78% | 0 | 36,500 |
Milk per cow, L/cow/year | 987.71 | 937.50 | 591.75 | 59.91% | 0 | 2940 |
Calves sold, n° calves | 4.90 | 4 | 5.81 | 118.56% | 0 | 40 |
Unproductive animals, heads | 2.53 | 0 | 4.52 | 178.92% | 0 | 32 |
Cheese yield, kg/farm/year | 245.25 | 0 | 733.71 | 299.17% | 0 | 9000 |
Milk production, L/ha | 107.80 | 52.63 | 186.79 | 173.27% | 0 | 1429 |
Stakeholder’s age, years | 51 | 51 | 14.51 | 28.40% | 20 | 85 |
Dependent relatives, n° | 2.91 | 3 | 1.80 | 61.99% | 0 | 9 |
Employments, workers | 1.49 | 1 | 1.11 | 74.28% | 0 | 6 |
Mean | Standard Error | Median | SD 1 | CV 2 | Q1 | Q3 | Min 3 | Max 4 | |
---|---|---|---|---|---|---|---|---|---|
Degree | 1.89 | 0.070 | 1 | 1.369 | 72.36 | 1 | 2 | 0 | 7 |
Closeness | 841.19 | 8.68 | 817 | 169.81 | 20.19 | 806 | 817 | 795 | 1945 |
Eigenvector | 0.057 | 0.00097 | 0.0462 | 0.019 | 33.43 | 0.046 | 0.065 | 0.014 | 0.108 |
Betweenness | 8.08 | 0.741 | 0 | 14.49 | 179.42 | 0 | 10.72 | 0 | 86.76 |
Constraint | 0.012 | 0.0001 | 0.0109 | 0.0028 | 24.20 | 0.010 | 0.011 | 0 | 0.0497 |
Code | Technologies | Mean | SD 1 | CV 2 |
---|---|---|---|---|
T32 | Breeding soundness evaluation in bulls | 96.61 | 18.13 | 3.29 |
T37 | Type of mating | 29.50 | 45.67 | 20.85 |
T35 | Estrus detection | 21.41 | 41.07 | 16.87 |
T36 | Pregnancy diagnosis | 15.40 | 36.15 | 13.07 |
T38 | Breeding policy | 12.27 | 32.85 | 10.79 |
T33 | Semen fertility evaluation | 11.49 | 31.93 | 10.20 |
T34 | Evaluation of female body condition | 2.61 | 15.97 | 2.55 |
Farmer, Code | f_1306 | f_824 | f_501 | f_510 | f_517 |
---|---|---|---|---|---|
Organization type | GGAVATT 1 | GGAVATT 1 | GGAVATT 1 | GGAVATT 1 | SPR 2 |
Technological level, % | 100 | 100 | 100 | 100 | 71.43 |
Structural characterization | |||||
Ecological zone, tropic | Dry | Wet | Wet | Wet | Dry |
Productive animals, cows | 12 | 14 | 14 | 10 | 15 |
Animal unit, heads | 22.8 | 30.8 | 20.5 | 19.20 | 21.9 |
Stocking rate, UA/ha | 1.333 | 0.993 | 0.891 | 0.96 | 2.701 |
Grazing surface, ha | 17 | 21 | 20 | 20 | 8 |
Productive orientation | Meat/subsistence | Milk | Milk/meat | Milk subsistence | Meat/milk |
Milk production, L/ha | 317.64 | 952.38 | 650 | 605 | 960 |
Milk yield, L/year | 5400 | 10,000 | 6500 | 6050 | 7680 |
Milk per cow, L/cow/year | 450 | 1428.57 | 1181.82 | 1210 | 512 |
Calves sold, n° calves | 5 | 3 | 6 | 4 | 10 |
Cheese yield, kg/farm/year | 0 | 0 | 0 | 0 | 1000 |
Stakeholder’s age, years | 74 | 57 | 46 | 76 | 31 |
Dependent relatives, n° | 1 | 2 | 5 | 3 | 3 |
Employees, workers | 0 | 2 | 2 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oriana, V.-M.; Carmen, D.-P.-H.; Cecilio, B.; Jaime, R.; Antón, G. The Importance of Network Position in the Diffusion of Agricultural Innovations in Smallholders of Dual-Purpose Cattle in Mexico. Land 2021, 10, 401. https://doi.org/10.3390/land10040401
Oriana V-M, Carmen D-P-H, Cecilio B, Jaime R, Antón G. The Importance of Network Position in the Diffusion of Agricultural Innovations in Smallholders of Dual-Purpose Cattle in Mexico. Land. 2021; 10(4):401. https://doi.org/10.3390/land10040401
Chicago/Turabian StyleOriana, Villarroel-Molina, De-Pablos-Heredero Carmen, Barba Cecilio, Rangel Jaime, and García Antón. 2021. "The Importance of Network Position in the Diffusion of Agricultural Innovations in Smallholders of Dual-Purpose Cattle in Mexico" Land 10, no. 4: 401. https://doi.org/10.3390/land10040401
APA StyleOriana, V. -M., Carmen, D. -P. -H., Cecilio, B., Jaime, R., & Antón, G. (2021). The Importance of Network Position in the Diffusion of Agricultural Innovations in Smallholders of Dual-Purpose Cattle in Mexico. Land, 10(4), 401. https://doi.org/10.3390/land10040401